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RADIATED POWER AND OHMIC LOSS OF THE
INFINITELY LONG CYLINDRICAL ANTENNA

Liang-Chi Shen and Tal Tsun Wu

Gordon McKay Laboratory, Harvard University
Cambridge, Massachusetts

s--, ,7'1//
The input conductance of an infinite antenna formed by a cylindrical tubular

conductor of interna_ impedance z i is obtained, together with the ohmic loss and

the radiated power which contribute to the input conductance° I_ is found thst

the ohmic loss on the antenna behaves like 1/[logll/zil] for small z i) rather

than a small perturbation of order z i. Several conclusions may be drawn: (1)

The infinite antenna with zero internal impedance is of very different character

from that with non-vanishing z i) even when z i is quite small; (2) The present

theory may be verified experimentally with an antenna of finite length provided ..

the internal impedance is not too low; (3) In the theory of the very long

antenna the internal impedance is not negligible for all practically available

metals. A brief qualitative discussion of the very long antenna is given to

indicate the need for further study on that subject,

ZNTRODUCTION

In the theory of the antenna as a boundary-value problem, the antenna has

usually been assumed to be made of a perfect conductor since the conductivities

of practically available metals are very high. The current distribution and the

input admittance of an antenna made of metal are often obtained under the assump-

tion of infinite conductivity and the effect of the finite conductivity is often

regarded as a small perturbation. The perturbation is indeed small for a short

antenna. As the antenna becomes longer, or in the extreme when it is infinitely

long, the similarity between an antenna with infinite condictivity and that with

high but finite conductivity disappears° Since the current on the infinitely
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long antenna with infinite conductivity is not square Integrable, perturbation

theory cannot be applied in a straightforward manner.

In order to see the effect of finite conductivity on long antennas, it

seems logical to try to study the infinite antenna first° In this report

the input conductance of an infinitely long antenna formed by a cyllndrlcal

i
tubular conductor of internal impedance z is obtained, together with the ohmic

loss and the radiated power which contribute to the input conductance. It is

found that the ohmic loss on the antenna behaves llke i/[logll/zil] for small

i i
z , rather than llke a small perturbation of order z o

THE SOLUTION

Let the ra41us of the infinitely long tubular antenna be a, the internal

i
impedance per unit length be z . The following Integral equation for the current

l(Z) on the antenna holds [i]:

d2 /(d_ + k2) K(z-z')l(z')d-'= 4_i__/k zi_o [_(,)- I(,)] (1)

where
, ikR

K(..) - 2-_ d0 --_ . R = _z-,')2+ (2a sin0/2) 2
--It

and z is the axial coordinate; _o is the intrinsic Impedance of free space,

and k is the free-space wave number o The time dependence is taken to be e-i_t

where _ is the angular frequency of the driving source which is assumed to be a

delta-functlon generator of unit voltage.

Define
GO

_ f t_z
x(_) = I(z) e dz

then from (i)
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= 4,1__/k 1 i (2)
_o (k2_ 2)[(&) +4_ik z

_o

In (2) K(_) - _£Jo(a/kZ-_z) H(I)(a_Z-_ z) [2] with branch cuts chosen as showni O J

in Fig° i. The inpu_ conductance G which is defined as G - lim Re I(z) is
z_0

readily obtained from (2) with the Fourier integral theorem:

/R 4_ikI¢°

1 e dt

G - 2-_ -k (k2-¢2)_i(Jo+iYo)Jo+ _Ikzl
¢o

+ 2 Re d (3)

k (_2-k2)21 l + 4_ikzi ,'
o o _;o

In (3), the Bessel functions Jo and Yo have arguments a2_-_ 2 and the modified

Bessel functions I° and K have arguments a42-k 2.o

The input conductance G can,be separated into three parts, namely,

G - GR + GH2+ GH3

where
i j2

4_ f (I-y2) o dy _ 4_GR " _ [(1.y2).a_+ Za]2+ [(l_y2).;oYo_ ZI]2 " _=I 1 (4a)

1

. 4ZR / , dy " 4ZR 12 (4b)GH2 _o [(l-y2)_J_+ ZR]2+ [(l-y2)_JoYo- Zi]2 to

4ZR f dy, 4ZRGH3 _ t--: [(y2_l)2ioKo ZRZi]2+ 2 = _-_ I3 (4c)

i = 21 i
ZR = 2___Re z ZI - -- Im z

_o ' to

The arguments of Jo and Yo are akl-/_y2, the arguments of I° and K° are aky2_-l.

ZI is positive if zi is inductive.

g
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The ohmic loss on the amtenna can be expressed as the integral of the

square o£ the absolute value of Z(z) along z:
m

Chmlc loll l 2/ { _e i I_(, ) 12d, <S> 1.

0

According to Parseval's formula, (5) can be written as the integral of the

square of the ablolute value of Y(_) along real _:

Ohmic 1O'S l 2_ Re i I_(_) 1 2 d_ l _ (&2 + &3 )

0

Thus GH- CH2+ GH3 can be identified as one component of the input conductance

representing the ohmic loss on the antenna. The other component, the radiated

power, is thus represented by GR. Thac is,

Radiated power - { GR.

The above relation can also be obtained by integrating the Poyntins vector over

a large sphere.

APPROXIMATIONS

The integrals 11 through 13 defined iv (4) can be evaluated approximately
i

in the limit of small z provided the antenna is "thin" in the sense that

l 2 lOSk_>) i
(6a)

i
¢ is said to be small in the sense that

izl2 2+ 2" ZR ZI << o (6b)

Under condition (6a), the Bessel functions in the lntegrands of I 1 and 12 can be

replaced by their limiting forms for small arguments° Similarly, the modified

Bessel functions in the tntegrand of 13 can also be replaced by their small

argument counterparts since the major contribution to 13 comes from near y = 1.

1
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Therefore, under (6a), 11 through 13 can be expressed as follows:

1

(I-y2> dz,

Zl = / [(l_y2)_ + 2+ 2 (7a)0 ZR] [(I-y2)QI(Y) + Zl]

1

12= f dy2+ 2 (Tb)
0 [(I-y2)_ + ZR] [(I-y2)QI(Y) + Zl]

I3 = f dy 2 (7c)
1 [(y2-1)Q3(Y) + Zl]2 + ZR

where

QI(F) = 0 - 27 - Iog(l-y2)

Q3(y) = _ - log(y2-i)

v = 0o57721566

The logarithmic functions in (Tb) and (7c) are further approximated by constants

such Chat log(l-y2) is replaced by log _2 in (7b) where _2 satisfies

(_2 _ + ZR)2+ [_2(_ - 27 - log _2)+ ZI ]2 - (K2+ m)lzl 2 (8a)

and Io8(y2-i) is replaced by log _3 in (7c) where _3 satisfies

2+ 2 (K2+ i) Izl 2. (8b)[_3(0 - log _3 ) + Zl] ZR =

If K is CreaCed as a constant, the above two equations can be solved for

_2 and 63 by iteration. Generally, one or two iterations are good enoush for

the purpose of ¢aluclating Q2 and 03 which are defined by

Q2(y) = Q2 = R - 27 - log _2 (8c)fQ3(y) = Q3 = n- log _3

i
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In the liml: a_ both ZR and ZI approach zero,

log (2 + log [ _ - 27 ]

(Sd)
I

log (3 + log [ n ]

Since K appears only In =he argument of the iogarlthmic function, no critical

accuracy is required for _-ts solution. The determination of K is carried out

in the Appendlx, where It is found to be appzoxlmately e, or 2.71828 ....

Up to this pclnc the Q(y) functions in (Tb) and (7c) are replaced by the

constants Q2 and Q3 respe=tlvely [(8c)], and no further appzoxlma_ion is

needed to carry out the integration_ _ct_: _hat ag the logarithmic functions

replace the Be_sel functions [_rom (4) to (7)], eqalvalently an extra zero

is introduced in the denominator of (2). 'rh_s extra zero is located near the real

axis though far away from y - i° Therefore, _rictiy _pe +Icing,the limits of

the integral 13 in the for:m .-f (re) should have been wrltt_::rfrom 1 to A, where

A is a constant not large enough to bring abcu_ the _=nt J_;ion from the extra

zero but large ei_ough to take '-+-toaccount =he coDt. b<_t_-a near y - io But

after the approximation (gb) has been irtyoduceel, th<+ _-:_trazero is eliminated

and the precaution of writing A instead oz _ In the upper limit of the integral

(7c) becomes _necessaryo

The denominatorsof the integrands of 12 and i3 are polynomials. These two

integrals can both be transformed into the following form:

J(A,p) " 2A dy . d_ (9)
P (y2-i)2. A2 d_-AT (t2+l)

A

where A and p are bo_ real This is Integrable and the result is

!
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• L j (p+r)2+ b2 1J(A,p_ - _ \ r(e41+ 032) - b log[ 2+ b2] (I0)(p-r)
i

where i/4 -

r - (I,A2) :o6(.t_ IA)
i.

J./4
• .tan-iA.

b " "-CI+A2) az.TtT")

0 < tan-IA • &

841 - 2 tan-l(p--_-r), 0 _<e41 __

-i. b

e32 - 2 tan L_"_') , 0 _ e _32

12 and Z3 can _hen be expreeaed In cerme of J(A,p)

L
3(a2,0) - 3(_2,B2 )

12 " 2B2[(Z_+ 2 2ZI)(Q2+ 2) _ (ZR, + Q2Zz)2]I/2 (lla)

j( ZR !_)
2 D B3

z3 " Q3B3 (llb)

2Q3ZR B3

where

Q2 - 0 - 2y - log _2

J,

Q3 " _ - log _3

ZR_ +"ZIQ2 1/2
B2 - (I �22 )

Q2 +_

_ 233.12 ':[(Z2R+ Z_)(q_ + "2) (Zp," + ziq 2)
a2 " 2 2

IB2(Q2 + 2)

ZI 1/2

e3 - (1 - _3 ) .

i
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In the llmlC as both ZR and ZI approach zero, 12 and 13 can be expressed

as foiZows:

c1 zR 16Q
12 = .... -_ [e + log ] (llc)

ZI

(i+ 2--_3) ZR 16Q_

13 - .......2Q3ZR [B - 4Q31og -_" ] (lld)

where

-i ZR

0_< e- tan (_i)_<yo

Thus, ZI

l ( 2Q2 ZR 4Q2

Q2zR

.. &_ 1 (1+ zz)Is---los ]

where the limiting forms of the Q_s are given in (8c), It can then be concluded

that the ohmic loss on the antenna behaves in the same manner as 1/(logl_l) for
A.

small z i. z

Although the foregoing approximations are intended for small IZ[, numerical

checks show that (lla) and (llb) are good approximations for (4b) and (4c),

respec_ively, up to ZR _ 10o

The I 1 integral in the form (7a) is of different character from 12 and I3;

that la, unlike the latter two, I 1 is tntegrable in the limit as ZR= ZI approaches

zero° This limit is exactly the input conductance of a perfectly conducting,

1967016945-011
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infinitely long antenna if it is multiplied by the constant 4_/_o. Let

• 1

(l-y2) dy'_0 '=
0 [(1-y2)_]2+ [(I-y2)Q1 (y)I2

then
1 i

f ,_d' +/ dy0 (l' 21[J'(c-i°g(i-y2)/21 2+(c_loz(l_y2))2]

The first integral can be integrated exactly and is equal to 1/2C where

C - _ - 27° The se:ond integral is obtained approximately by first neglecttn 8

the term 2 and then expanding in powers of !/Co it is approximately equal to

2

1__ 1 f lo_(2-x)dx]C2 log 2 +_ [(log 212+ 2 x °
1

Thus

I° w _ + C2

The following two facts should be noted: (i) 11 approaches I° in the

limit of vanishing IzI and (2_ the main difference between the integrand of

I1 and that of I° for small [Z[ is in the small region from y - _ to

y - i, where _i is a small quantity of the order of iZl/C. Thus, I1 can be

expressed as follows for small iZl:

ii . --J " (i-_2_ dy .._
0

This can be integrated by following the same steps of integration as for I o

o

The result is

ii 1 -1_ -I
" --2_Ira. _ -tan C-l°g_l]+ l__log(t+ 1__I)+C2 C'_I [log(l+ 1__1 ) ]2

+_2 / log(2-X)x dx (12a)
1

ii
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Here _ is treated as a constant. Since 61 appears only in the arguments

of the logarithmi= functions, its value cannot critically affect the value of I1

given in (12a)_ As mentioned, _i is of the order of IZi/C for small IZi, which

is a p_oper_y slmllar to _2 and _3 deflned in (8) Numerical checks show that

if the value of _2 ts used for _i' Ii in the exact form of (4a) is represented

satisfactorily by the approxima=e form in (12a) up to ZR- io For ZR< I, (12a)

can be written as

1 log(_i) +i

For ZR in the range of 1 to i0, Ii, I2, and 13 are of the same character.

Since ths latter two are found to be well approx!mated by the forms of (lla)

and (llb) up to ZR= I0, the same thing can be done for II in the range

1 < ZR < i0o Thus,
1 1

dy f y2 dy

I 1 = / [(l_y2)_+ZR]2+[(i_y2)%_.ZI] 2 "0J0 [(1-y2)_+ZR]2+[(1-y2)QI+ZI]2

The first integral is exactly I2, the second integral can be transformed into the

form of (9) if the varlable y is changed to I/z, The result is

Pl 1 j(Q2ZR-Z:2 'Pl ) for 1 < ZR < i0 (12¢)
I1 " 12-_-Q2ZR_ZI_

a1
where

I (Q2+Zl)2

Pl " tZR+_)2+ ii/2>

_(ZR+.) + Q2(Q2+ZI)'

2
aI - ,(ZR+_) + Q2(Q2+ZI) o

Equation (12c) can be checked numerically against the exact form of (4a). It is

found to be in good agreement with the latter° Furthermore, (12b) and (12c)

overlap near ZR- lo

i
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FiSo 2 shows some numerical results. The input conductance G together with

GR (radiated power) and GH (ohmic loss) are plotted against the normalized interne%

impedance ZR which ranges from 10 to 10 -5 with Z I- 0o This corresponds to an

antenna formed by a thin layer of conductive coating° If a good conductor is

used and skin effect exists, ZI- ZR and they are of the order 10-2 to 10-3 . This

case is also shown graphlcall7 in Fig_ 2- The results show that in the case

ZR >> ZI, the _hmJc loss is of the same order of magnitude as the radiated

power unless ZR is ex-remel_; _mal! (say, less than 10"6) o When skin effect is

slgnifi:an_ ZI- ZR, and GH is only about one-_alf as great as when ZI- 0, so

that the input conduc:ance is quite different from that of a perfectly conduc-

ting antenna,

CONCLUSIONS

The following conclusions =an be drawn from the foregoing calculation:

(1) The infinite an_enn_ hos quite different propertiea when its internal imped-

ance is zero than when zI is uon-vanlshing, even when zi Is quite small. (The

input impedance of the former has been ob=ained, for example by Papas [3]; the

current distzlbution has beer worked out, for example by Kunz [4].)

(2) The present =heozy may be ,,erlf_ad experimentally with an antenna of finite

length provided the internal impedance I_ not too lowo

(3) In the theory of =he very long antenna the internal impedance is not negli-

gible foz all practically available metals° The current distribution is greatly

i
modified when z differs from zero° This effect should be more _pparent as the

antenna becomes longez or as the impedance per uni= length becomes larger. The

above statement is 111ustrated by the qualltatl_e sketch of Fig. 3. The initial

slope of the loss curve of a long antenna is determined by the antenna length; a

perturbation method may be used to calculate it, _or larger zi, the loss curve

I

1967016945-014



0

1967016945-015



i

. l l Zi:O i1,0 zI_ ZR I

0.8- i1 -

I )'
O.6- I

/I/;

I 21/
\ 0.4-
_- I ]1113

0.2- I/ _
,,r

2/
11"1

o ----_" 3 I 1 I
0 0.005 0.01 0.t t 40

ZR=Re( 2 x Z.__IL_(;o )

FIG. 3 LOSS CURVE OF ANTENNAS

I: INFINITE ANTENNA_ 2 AND 3: LONG
ANTENNAS (SKETCH) kh2 >kh 3

I

1967016945-016



-_.2-

Joins the _ur_a of the Infinitely long _ =anna w_th the same z _ since the currant

on the long antenna should be attenuated =o 6uch a small quantity at the ends

that any in=rsass of the antenna length would not affect the currene distribution,

i
But, foe moderate z , oc fo_ very long antennas, the behavior requires furthar

study.
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APPENDIX

This appendix is devoted to the estimation of the constant K in the approxi-

Nations associated w_th (8)_ It is assumed that ZI= 0. The problem is to

determine K so :ha_ the logarithmlc function can be replaced by a constant

determined by (8) without excessive error, The question is actually equivalent

to approximating

dx (A-l)
f v_z'x ;x2(= - l:g x)2+ I]0

by

' dx
o _ (xZq2 �1)

with Q - C - log Xo, Xo(C - log xo) - Ko

The integral (A-l) is es_en:iall> 13 in (_c); z _ is proportional to ZR,

C corresponds _o _ and x is proportional to 72-1o

Take the difference of the above =wo integrals

" /
= ] dx . dx

{x2[C - ins x]2_l__ _x2Q2+l}/_x

0/ 0/o dx . dx (A-2)

{x21Q-lo__ 12+1_e_ ,:x2Q2+l},,F_x

W

/ dx _/ dx
x _ (x2Q2+l) l+c_-_z,_0 ((x2Q2+l)-2x2Q log _ # 0

o

Expand the first integral s_ tha_ ,:he flrst te_m cancels the second integral,

and the result is
2 x

x log --

/ -A _ 2Q o

0 iv_z'x (x2Q2 Hdx (A-S)

1967016945-018



A-2

xo is determined Dy K ks defined In (A-I): K is to be chosen so that the right

ha-_ side of (A-3_ is zero= Let t - x2Q2_

f /_dt io__ = o: (A-4)
0 (:._2¢i+z_,Q

IC is difficu:.*,to in_.egrate(A-4) in gene:sl, but it is known for two special

case8;

0 (i.:)2 log = 0 (A-5)

Let

f,- -FI_.) . Vt dt t _2 (A-O
0 (l_t)

us

' _" J_ d: • log
FI(':') = J 2 i_g t • (A-7)

0 ( i+et_

Therefore, (A-5) is eq_+_v_lentto

#

FI(0) - FI(0_ log K2 - 0o

The intes_aL CA-6) is known [Refo 5, _o 9"

Fi(:) = (_ _{). se= =T
and

1og K2 = -- " Z_ K - • = 2°71828T/2

Case IIo z_ _

/t lq4 dt------ log t

0 (i+:)2 _ 0 (A-8)
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t _

F2(.) . / dt
0 Clot)2

!

iog K2 - _2(0----)
72 ( 01

F2(T) is alm_ known [Xefo 5, p0 9]

!

log K2 .. 4 - ,, K _ i 536-

Thus, it _eems plauelbie to _hoose K equal to e - 2.71828 when ZE- 10-5 to
10

in the numerical calculations,.
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Cor_ection to

RADIATED POWER AND OHMIC LOSS OF THE
INFINITELY LONG CYLINDRICAL AWTENNA

Lian$-Chl Shen end Tel Tsun Wu

Gordo_ McKay Laboratory, Harvard University
Cambridge, Massachusetts

In the above report the authors would like to make the foll_wing corrections:

In (3), (_2-k2) in the second integral should be changed to (k 2- _2). Conse-

quently ZI in (4c) and in (7c) should be preceded by m_nus signs. Subsequent

calculations are valid except that for 13 when ZIP 0. Thus, (8b) is valid for

ZI- 0 only; s_t in (8d), the limit of log _3 should be changed to

li
log C3 _ Iog(KZR/_) for ZI - O,

The llmlt of los _2 is correct. The expression (llb) _nd (lld) for 13 and the

expression fo: _3 below (11d) are correct for ZI- 0 only. _he last sentence

above the Conclusion should be deleted.

What remains to be done is to evaluate I3, or equiva]tntly, _3' _or ZI# 0.

Only the case when 0 _ ZI _ ZR << 1 is studied since ZI- ZR << 1 for metal as

a result of 8kin effect.

It is learned from previous calculations that 13 as defined by (4c) can be

approximated b$ (1,1/)) for ZI= 0 if the conditions (6) are satisfied. Let

A(zI) - I3(z I) - I3(o)

" ' [(y2_l)n3(Y)_Zl]2+ 2 - 2+ 2 dy (C-l)1 _ ZR [(y2-1)Q3(Y)] ZR J

Note that the contr£butlon to _(Zl) is mainly from a small, region near y - i.

The losarithatc function Q3(y ) may then be replaced by a proper constant:

1967016945-022
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! !

Q3(y) = Q3 " _- log _3 (c-2)

!

Under the condition that ZI < ZR << 1, _3 can be approximately chosen to be
I

ZI/fl since the main contribution to _(Z I) is from the region 0 < y2-1 < 63 .

A(ZI) is readily obtained in terms of the J-functions defined in (9)
!

when Q3(y ) is replaced by Q3' and the result is

ZR 1 ZR

A(ZI) = _8,32 ,--7) J(-T, 1)
• 83 Q3 (c-3)

2ZRQ3_3 2ZRQ3

where , ZI 1/2
83 - (1 +-_) .

Q3

Therefore J(_, 1)

13 " A(ZI) + 2ZRQ3 (C-4)

And for 0 _ ZI _ ZR << I, and also under the conditions (6),

_ -I.ZR, 1

I3 : 1 , _ - can t_i;] + -
2ZRQ3 [g 2ZRQ3

_4( ___1 _ z_)GH3= ¢o 2Q3'[_ - tan-l( ] + _4Q3} (C-5)

ZR (!.. !;.)). (C-6)& - + + -
Q3 Q3 zI) Q2 Q3

Thus, _ does not change slgnlflcantly as ZI is changed from 0 to ZR, as long

as ZR << I. All above approximations have been checked by numerlcal integrations.
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Fig. 2 and Fig. 3 have been corrected and are shown in the following

pages. Fig. 4 shows the comparison between the approximate formula (C-5)

and the numerical integration of the exact formula (4c) for _3" The

agreement is found to be very good.
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FIG. 3 LOSS CURVE OF ANTENNAS

1: INFINITE ANTENNA, 2 AND 5: LONG
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1967016945-026



t.0 I I I I ....

ZR = 0,01 ,,Q,= 9.45
APPROXIMATION

0.9 NUMERICAL
-- x x INTEGRATION --

o.8.- _x
x

0.7

0.6

0.5/ I I I I
0 0.2 0,4 0.6 0.8 1.0

ZIIZ R

FIG. 4 COMPARISON OF THE APPROXIMATE FORMULA
(C-5) AND THE NUMERICAL INTEGRATION OF

THE EXACT FORMULA (4C) FOR GH3
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